Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extensive structural renovation of retrogenes in the evolution of the Populus genome.

Identifieur interne : 003631 ( Main/Exploration ); précédent : 003630; suivant : 003632

Extensive structural renovation of retrogenes in the evolution of the Populus genome.

Auteurs : Zhenglin Zhu [République populaire de Chine] ; Yong Zhang ; Manyuan Long

Source :

RBID : pubmed:19789289

Descripteurs français

English descriptors

Abstract

Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.

DOI: 10.1104/pp.109.142984
PubMed: 19789289
PubMed Central: PMC2785971


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extensive structural renovation of retrogenes in the evolution of the Populus genome.</title>
<author>
<name sortKey="Zhu, Zhenglin" sort="Zhu, Zhenglin" uniqKey="Zhu Z" first="Zhenglin" last="Zhu">Zhenglin Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</author>
<author>
<name sortKey="Long, Manyuan" sort="Long, Manyuan" uniqKey="Long M" first="Manyuan" last="Long">Manyuan Long</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19789289</idno>
<idno type="pmid">19789289</idno>
<idno type="doi">10.1104/pp.109.142984</idno>
<idno type="pmc">PMC2785971</idno>
<idno type="wicri:Area/Main/Corpus">003446</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003446</idno>
<idno type="wicri:Area/Main/Curation">003446</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003446</idno>
<idno type="wicri:Area/Main/Exploration">003446</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extensive structural renovation of retrogenes in the evolution of the Populus genome.</title>
<author>
<name sortKey="Zhu, Zhenglin" sort="Zhu, Zhenglin" uniqKey="Zhu Z" first="Zhenglin" last="Zhu">Zhenglin Zhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</author>
<author>
<name sortKey="Long, Manyuan" sort="Long, Manyuan" uniqKey="Long M" first="Manyuan" last="Long">Manyuan Long</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Introns (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sex Chromosomes (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Chromosomes sexuels (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (génétique)</term>
<term>Introns (génétique)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Genes, Plant</term>
<term>Introns</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Sex Chromosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chromosomes sexuels</term>
<term>Gènes de plante</term>
<term>Introns</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19789289</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>151</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Extensive structural renovation of retrogenes in the evolution of the Populus genome.</ArticleTitle>
<Pagination>
<MedlinePgn>1943-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.142984</ELocationID>
<Abstract>
<AbstractText>Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Zhenglin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Long</LastName>
<ForeName>Manyuan</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012730" MajorTopicYN="N">Sex Chromosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19789289</ArticleId>
<ArticleId IdType="pii">pp.109.142984</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.142984</ArticleId>
<ArticleId IdType="pmc">PMC2785971</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1999 Apr;21(4):429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10192397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Aug 1;27(15):3219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10454621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Oct;12(10):1611-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Dec;12(12):1854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Nov;4(11):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 23;303(5657):537-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 29;430(6999):569-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13324-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):R80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16246-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 May;21(5):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):935-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Aug;95(2):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Nov;3(11):e357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16201836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jun 15;22(12):1437-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17099226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Dec 30;385:96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Aug 24;317(5841):1070-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17656687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007 Jul 30;8:273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17663764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 8;450(7167):238-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;406:179-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Apr 1;6(4):e80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Aug;24(8):378-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18597887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Oct 08;9:466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19030023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Nov 25;6(11):e283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2009 Feb;25(2):67-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Jan 09;10:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19134208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e5040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Feb 15;251(4995):753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Jul;38(4):735-742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28555827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3162770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1986 Sep;3(5):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3444411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Apr 2;260(5104):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7682012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Pékin</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Long, Manyuan" sort="Long, Manyuan" uniqKey="Long M" first="Manyuan" last="Long">Manyuan Long</name>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhu, Zhenglin" sort="Zhu, Zhenglin" uniqKey="Zhu Z" first="Zhenglin" last="Zhu">Zhenglin Zhu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003631 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003631 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19789289
   |texte=   Extensive structural renovation of retrogenes in the evolution of the Populus genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19789289" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020